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Abstract

In this paper, the generalized shooting method and the harmonic balancing method to determine the
periodic orbit, its period and the approximate analytic expression of the non-linear bearing–rotor system
are presented. At first, by changing the time scale, the period of the periodic orbit of the non-linear system is
drawn into the governing equation of the system explicitly. Then, the generalized shooting procedure is
sought out. The increment value changed in the iteration procedure is selected by using the optimization
method. The procedure involves determining the periodic orbit and its period of the system, and the
stability of the periodic solution is determined by using Floquet stability theory. The validity of such
method is verified by determining the periodic orbit and period of the forced van der Pol equation.
Secondly, the periodic solution of the non-linear rotor–bearing system is expanded into Fourier series
according to the character of the solution obtained by using the generalized shooting method. Then the
approximate analytic expression of the periodic solution of the system is obtained by using the harmonic
balancing method. Theoretically, the solution with any precision can be obtained by adding the number of
the harmonics. At last, the periodic orbit, period and approximate analytic expressions of the periodic
solution of the non-linear rotor–bearing system are provided.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The method of determining the periods of the periodic orbits of the non-linear dynamics
systems is one of the most important fields in the non-linear research, because it is related to many
important problems such as bifurcation, stability problem, chaos and so on. There are many ways
to determine the periodic orbit and period of the non-linear dynamics system. Those methods
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generally can be classified into two categories, namely, the frequency domain methods and the
time domain methods. The former includes the harmonic balancing methods, and the latter
includes the shooting method and Poincare method. In 1965, Urabe [1] used the oscillation
method for the non-linear periodic system. In 1966, Urabe and Beiter [2] extended his
investigation, and presented the numerical computation of the non-linear forced oscillations. In
1983, Lau et al. [3] gave an incremental harmonic balance method with multiple time scales for a
periodic vibration of the non-linear system. In 1994, Xu and Cheng [4] investigated the harmonic
balancing method, and presented a new approach to solve a type of the vibration problem. In
1997, Sundararajan and Noah [5] presented a shooting algorithm with the pseudo-arc length
continuation for a non-linear dynamic system subjected to the periodic excitation. The frequency-
domain methods assume a periodic solution with a finite number of the harmonics and then
estimate the coefficients of the assumed harmonics by substituting the periodic solution in the
equations of motion given and solve the resulting set of the non-linear algebraic equations, which
may be polynomial, exponential or transcendental. The number of nonlinear equations increases
two with each addition of harmonic terms in assumed solutions and the total number of equations
to be solved enormously exceeds that of the order of the original system. The methods become
tedious even for moderately large order systems and the convergence of such a huge set of the
non-linear algebraic equations poses problems since it is largely dependent on the initial guesses.
A time domain method, such as the shooting method, assumes a point in the periodic solution and
then shoots in time for an assumed period of T and checks if the periodicity condition is satisfied.
The precision required for convergence is calculated by solving a linear set of algebraic equations.
The non-linear algebraic equations that arise from the shooting procedure are of the same order
as that of the original system and, hence, are considerably easier to solve than the larger system of
polynomial/exponential/transcendental equations that result from the harmonic balance methods.
Fortunately the higher the order of the system, the more evident the advantage of the shooting
method. The classical perturbation method is only suitable to the weak non-linear system [6]. For
the continuous method, in order to pass through a turning point that generally involves a stable
and an unstable branch, a shooting algorithm with pseudo-arc length continuation was presented
for the non-linear dynamic system subjected to periodic excitation in paper [5]. Unfortunately it
was based on the known period of an excitation. As to a non-autonomous system, the period of
the responses can be determined through the methods mentioned above, because it is related to
the period of the excitation. If there is a period that has nothing to do with the excitation in the
non-linear dynamics system, there will be some difficulties when using these methods. If there is a
periodic orbit in an autonomous system, the question is how to determine it quickly. Although it
can be obtained through Runge–Kutta numerical integration method, there is blindness to some
extent, and the error of the period solved cannot be less than the integration step-size.

In order to overcome the shortcomings mentioned above, the traditional shooting method is
modified using the period of the system as a parameter in this paper. As the result, the periodic
orbit and period of the non-linear dynamics system is determined efficiently. The efficiency in
determining the periodic orbit and its period of the non-linear bearing–rotor system is
demonstrated in this paper. On the basis of determining the period (or frequency) of the system,
the periodic solution of the non-linear bearing–rotor system is expended into Fourier series
concerned with frequency solved above. Then the approximate analytic expressions of the
periodic solution of the system are obtained by using the harmonic balancing method. In theory,
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the solution with any precision can be obtained by adding the number of the harmonics. Finally,
the periodic orbit, period and the approximate analytic expressions of the solution of the
non-linear rotor–bearing system are obtained.

2. Method analysis

2.1. The generalized shooting method

Consider the following non-linear system:

dx

dt
¼ f ðx; t; aÞ; x; fARn; t; aAR; ð1Þ

where a is a physical parameter. Suppose that a periodic orbit of system (1) exists and its period is
T : The periodic orbit is

xp ¼ xpðt þ TÞ; xARn; tAR: ð2Þ

It can be seen from Eq. (1) that the period T is not explicitly shown in the governing equation of
the system. In order to show the period T explicitly in the equation, system (1) is transformed into
the following equation by using t ¼ Tt:

dx

dt
¼ Tf ðx;Tt; aÞ; x; fARn; t; aAR; ð3Þ

where a is a physical parameter and T is the original period of system (1). The period of the
periodic orbit of system (3) is changed to 1, namely xðtÞ ¼ xðtþ 1Þ: The period of system (1) is an
unknown value. However, the period of system (3) is a known value. Integrate system (3) from
t=0 to 1, which corresponds to integrating system (1) from t=0 to T : Because the period T is
already explicitly present in the equation of system (3), the period as a parameter take part in the
iteration procedure of the shooting method. The periodic orbit and its period of system (1) can be
obtained indirectly by determining that of system (3). The problem of determining the periodic
orbit and period of system (1) is transformed to that of finding those of system (3). For the
periodic solution of system (3), we have x0 ¼ x1; where x0 denotes the state vector at the time 0,
and x1 denotes the state vector at the time 1 of system (3).

Choose the initial condition as follows:

x0
i ¼ Zi;

T0;
i ¼ 1; 2;y; n

(
: ð4Þ

Choose the initial condition (4) and integrate system (3) from t=0 to 1. Then the value of x1 can
be obtained. Apparently, the value of x1 is dependent on the initial condition chosen, x1 is a
function of Z and T0: Thus we can speak of x1ðZ;T0Þ; with Z ¼ ðZ1; Z2;y; ZnÞ:

r is the value of x1 obtained after integrating one period minus x1 chosen as the initial value.
Certainly, r is also a function of Z and T0:

ri ¼ x0
i � x1

i ; i ¼ 1; 2;y; n: ð5Þ
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For the periodic solution of the system, the following condition must be satisfied:

ri ¼ x0
i � x1

i ¼ 0; i ¼ 1; 2;y; n: ð6Þ

If the integral orbit of system (3) with the initial condition chosen from t=0 to 1 is a periodic
orbit justly and T chosen is the period of the system exactly, then Eq. (6) will be satisfied. At this
time, x0and T0 are the solutions to be determined. However, this choice is almost impossible. In
order to obtain the values of x and T that satisfied Eq. (6) at t ¼ 1; they must be worked out by
the iterative method. The details of the iteration arithmetic are as follows.

Integrating system (3) over one period and calculating the residual function r; in terms of the
initial condition, yields

riðZ;T0Þ ¼ x1
i ðZ;T

0Þ � x0
i ¼ x1

i ðZ;T
0Þ � Zi; i ¼ 1; 2;y; n: ð7Þ

Expand r into a Taylor series near Z and T ; and retain the linear teams only

riðZ;T0Þ þ
Xn

s¼1

@riðZ;T0Þ
@Zs

DZs

� �
þ

@riðZ;T0Þ
@T0

DT0 ¼ 0; i ¼ 1; 2;y; n: ð8Þ

From Eq. (7), partial derivative of ri with respect to Zj and T0; the following formula can be
obtained:

@riðZ;T0Þ
@Zj

¼
@x1

i ðZ;T
0Þ

@Zj

�
@Zi

@Zj

¼
@x1

i ðZ;T
0Þ

@Zj

� dij ; i; j ¼ 1; 2;y; n; ð9Þ

where dij is the Kronecker symbol, defined by

dij ¼
1; i ¼ j;

0; iaj:

(
ð10Þ

@riðZ;T0Þ
@T0

¼
@x1

i ðZ;T
0Þ

@T0
; i ¼ 1; 2;y; n: ð11Þ

Taking partial derivative of Eq. (3) with respect to Zj; we have

d

dZj

dxi

dt

� �
¼ T0 d

dZj

fiðx;Tt; aÞ½ �; i; j ¼ 1; 2;y; n: ð12Þ

Exchanging the order of the partial differentiating, we have

d

dt
dxi

dZj

 !
¼ T0

Xn

s¼1

@fiðx; aÞ
@xs

dxs

dZj

" #
; i; j ¼ 1; 2;y; n: ð13Þ

Taking partial derivative of Eq. (3) with respect to T0; we have

d

dT0

dxi

dt

� �
¼

d

dT0
T0fiðx;T0t; aÞ
� �

; i; j ¼ 1; 2;y; n: ð14Þ
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Exchanging the order of the partial differentiating, we have

d

dt
dxi

dT0

� �
¼ fiðx;T0t; aÞ þ T0

Xn

j¼1

@fiðx;T0t; aÞ
@xj

dxj

dT0

� �" #

þ T0 fiðx;T0t; aÞ
@T0

; i ¼ 1; 2;y; n: ð15Þ

Let dxi=dZj ¼ yij : Then Eq. (13) is transformed into

dyij

dt
¼ T0

Xn

s¼1

@fiðx;T0t; aÞ
@xs

dxs

dZj

" #

¼ T0 @fiðx;T0t; aÞ
@x1

y1j þ
@fiðx;T0t; aÞ

@x2
y2j þ?þ

@fiðx;T0t; aÞ
@xn

ynj

� �
; i; j ¼ 1; 2;y; n: ð16Þ

Let dxi=dT ¼ yiT : Then Eq. (15) is transformed into

dyiT

dt
¼ fiðx;T0t; aÞ þ T0

Xn

j¼1

@fiðx;T0t; aÞ
@xj

yiT

� �
þ T0 fiðx;T0t; aÞ

@T0
; i ¼ 1; 2;y; n: ð17Þ

Combining Eqs. (16) and (17), an initial-value problem of an ordinary differential equation is
formed. The initial condition in these equations, by means of the selection of x0

i ; can be set as
y0

ij ¼ dij (dij is the Kronecker define symbol) and y0
iT ¼ 0: Applying the initial condition mentioned

above to integrate Eqs. (16) and (17) from t=0 to 1, y1
ij and y1

iT can be obtained. Those are the
values of dxi=dZi and dxi=dT0 at t ¼ 1; where i; j ¼ 1; 2;y; n: Of course, during the solving
process the values of @fiðx;T0t; aÞ=@xj at time t will be used. So during the procedure of solving
Eqs. (16) and (17), original system (3) must be integrated under initial condition (4) chosen at the
same time. The values of x at time t can be solved, and further the values of @fiðx;T0t; aÞ=@xj can
be obtained. Substitute the obtained solution of dxi=dZi and dxi=dT at t ¼ 1 into Eqs. (9) and
(11) separately. Then the values of @riðZ;T0Þ=@Zj and @riðZ;T0Þ=@T0can be obtained, where i; j ¼
1; 2;y; n: Substituting riðZ;T0Þ; @riðZ;T0Þ=@Zj and @riðZ;T0Þ=@T0 into Eq. (8), a set of the nth
order linear equations with n þ 1 variables (DZ1; DZ2; y; DZn; DT0) is formed. As the number of
variables is more than the number of equations, there are an innumerable groups of solutions. In
order to solve for the values of DZ1; DZ2; y; DZn; DT0 from the equations mentioned above, one
variable must be fixed. But which variable is appropriate for this? In terms of the difference
between the n þ 1 initial conditions chosen and the values of the period at the end point obtained
after one period integral, the variable that must be fixed need to be selected. In r; if the value of rk

is the least, then it means the initial value of xk selected is the one closest to the actual periodic
orbit of the system. Therefore, choose the minimum ri solved to be fixed. Then the initial
condition related to it will be kept constant at the next iterative process, i.e., the column
corresponding to the minimum rk in the coefficient matrix of the linear equation group (8) will be
deleted. If DT0 in ri is the minimum, the column corresponding to T0 cannot be deleted, because
the period T of the periodic orbit of the system is certain. After solving the values of
DZ1; DZ2; y; DZn; DT0; let x0

i ¼ Zi þ DZi; T0
next ¼ T0 þ DT : Repeat such a procedure until the

precision requested is satisfied. Thus the periodic orbit and its period of system (3) can be
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obtained, and then the periodic orbit and its period of system (1) can be obtained by a reverse
transform t ¼ t=T :

The procedure above can be summarized as follows:

1. Select the initial vector x0
i ¼ Zi (i ¼ 1; 2;y; n) and an initial period T :

2. Integrate Eq. (3) from t=0 to 1. The value at x1
i (i ¼ 1; 2;y; n) can be obtained.

3. Calculate the residual vector r: Stop if the precision is satisfied, otherwise go to the next step.
4. Determine the minimum residual vector r except DT and mark it k:
5. Integrate Eqs. (16) and (17) from t=0 to 1.
6. Solve Eq. (8). The values of DZ1; DZ2; y; DZn; DT will be obtained.
7. Let x0

i ¼ Zi þ DZi (i ¼ 1; 2;?; n) and T0 ¼ T0 þ DT :
8. Go back to (2).

2.2. The stability of the periodic solution

Either the stable periodic solution or the unstable periodic solution of the non-linear system can
be obtained by using the classical shooting method [9]. For system (3), if the integral direction is
from t=0 to 1, the periodic solution obtained is stable. If the integral direction is from t=0 to �1,
the periodic solution obtained is unstable. In order to determine the stability of the periodic
solution obtained, in this paper Floquet stability analysis is used. Floquet stability analysis is used
in determining linear stability of the periodic solution of a given non-linear system and it solves
using the procedure given in Section 2.1. That is a very useful tool in determining the mode by
which a period solution loses stability and what type of bifurcation may be anticipated.

Suppose a periodic solution has been already determined, that is, the values of Z1; Z2; y; Zn

and T have been already obtained. Then for every circulation along the periodic track (limit
circle) and the fixed period T ; there exists

xnextð0Þ ¼ Znext ¼ jðZ1; Z2;y; Zn;TÞ: ð18Þ

Apparently, formula (18) can be regarded as the iteration procedure of the variable Z1; Z2; y; Zn:
Integrating Eq. (3) from t=0 to 1 once corresponds to iterating one time. Hence, (Z1; Z2; y; Zn)
ought to be the fixed point of the iteration procedure. If the iteration procedure constructed in the
vicinity of the point (Z1; Z2; y; Zn) is convergent, then the periodic solution that led from it is
asymptotically stable. The astringency of the iteration procedure, i.e., the stability of the periodic
solution, is determined by the eigenvalue of the linearization mapping j in the point
(Z1; Z2; y; Zn), viz. determined by the eigenvalue l of the matrix B: The matrix B is Jacobi
matrix of system (3):

B ¼
@ji

@Zj

( )
¼ fpi;jð1Þg; i; j ¼ 1; 2;y; n; ð19Þ

where pi;jð1Þ is the value of the element of Jacobi matrix B at t ¼ 1 for the selected valuable x ¼ Z:
These eigenvalues are entitled multipliers, and the numeral mi ¼ log li is entitled character
exponent [6,9]. According to Floquet’s stability theory, for all l; if only one li satisfies jlij ¼ 1 and
the others do jlijo1; then the periodic solution is stable. When certain li crosses the unit circle,
the stability of the limited circle will change. The matrix B can be obtained in the iteration
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procedure in Section 2.1, its eigenvalue can be solved by Jacobi rotary transform method. Thereby
the stability of the periodic solution can be determined according to the eigenvalues solved.

2.3. The periodic solution of the forced van der Pol equation

In order to verify the validity of the method depicted above, such method was used to determine
the periodic orbit and period of the forced van der Pol equation. The results obtained are
compared with those in Ref. [7] and of Runge–Kutta method.

The forced van der Pol equation is as follows:

.x þ mðx2 � 1Þ ’x þ x ¼ b cosot: ð20Þ

Eq. (20) can be written as the following form:

’x1 ¼ x2;

’x2 ¼ �mðx2
1 � 1Þx2 � x1 þ b cosot: ð21Þ

Let t ¼ t=T ; Eq. (21) can be transformed into

’x1 ¼ Tx2;

’x2 ¼ Tð�mðx2
1 � 1Þx2 � x1 þ b cos ðoTtÞÞ: ð22Þ

When b ¼ 9; o ¼ 3:1416 and m ¼ 4:2727:25; the system has the P-5 periodic solution [7]. Choose
the system parameter as b ¼ 9; o ¼ 3:1416 and m ¼ 5:25; and select the initial iterative vector
x0 ¼ ðx1; x2Þ ¼ ð0; 0Þ and T0 ¼ 11:0; follow the method mentioned above, the periodic orbit and
its period of the system can be solved through seven times iterations. The period is T ¼
9:999976613 and the periodic orbit is illustrated in Fig. 1. Under the condition of the parameters
selected above, the theoretical period of the system is T ¼ 5 � ð2p=oÞ ¼ 9:999976616: The value
of the period T that is predicted by the shooting method is nearly identical to that obtained by
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theoretical analysis. A very small difference only in the ninth decimal place is found. Fig. 2 shows
the periodic orbit determined by the self-adaptive step Runge–Kutta integration. By comparing
the several results obtained above, obviously, the method depicted in this paper is valid and
efficient.

3. The approximate analytic expressions of the periodic solution of the non-linear rotor–bearing

system

3.1. The model of the non-linear rotor–bearing system

The mathematical model of a Jeffcott rotor–bearing system supported by the non-linear oil film
[8] is shown in Fig. 3.

In Fig. 3, G denotes the half of the total weight of the rotor of the system, O denotes the
geometry center of the axle bush, O1 denotes the geometry center of rotor, Oc denotes the mass
center of rotor. fr and ft denote the non-dimensional radial and tangential values of the non-linear
oil film force, respectively. Selecting the non-dimensional eccentricity e ¼ r=c (r denotes the mass
eccentricity of the rotor, c denotes the radius gap of the bearing), the equation of the system is

.x ¼
1

o2
�

s

o
ðfr cosðjÞ þ ft sinðjÞÞ þ e cosðtÞ;

.y ¼ �
s

o
ðfr sinðjÞ � ft cosðjÞÞ þ e sinðtÞ; ð23Þ

where s ¼ 6mBR3=ðMc2
ffiffiffiffiffi
gc

p
Þ; o ¼ O

ffiffiffiffiffiffiffi
c=g

p
; j ¼ arctanðy=xÞ; t ¼ O%t; m is the lubricating oil

viscosity, B the bearing width, R the bearing radius, M the bearing half mass, and O the bearing
rps.
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Mark the state vector ðx1; x2;x3; x4Þ ¼ ðx; y; ’x; ’yÞ: Then Eq. (23) can be converted into the state
equation

dx1

dt
¼ x3;

dx2

dt
¼ x4;

dx3

dt
¼

1

o2
�

s

o
ðfr cosðjÞ þ ft sinðjÞÞ þ e cosðtÞ;

dx4

dt
¼ �

s

o
ðfr sinðjÞ � ft cosðjÞÞ þ e sinðtÞ; ð24Þ

Adopt the infinite length bearing model, the expression of the radial and tangential values of the
non-linear oil film forces of the bearing [8] are given by

fr ¼ 1 � 2
dj
dt

� �
2e2

ð2 þ e2Þð1 � e2Þ
þ

½p2ð2 þ e2Þ � 16�

pð2 þ e2Þð1 � e2Þ3=2
de
dt
;

ft ¼ 1 � 2
dj
dt

� �
pe

ð2 þ e2Þð1 � e2Þ1=2
þ

4e
ð2 þ e2Þð1 � e2Þ

de
dt
: ð25Þ

3.2. The periodic orbit and period of the non-linear rotor–bearing system

As to Eq. (24), when the parameters are s ¼ 1:2; e ¼ 0:2 and o ¼ 0:8; applying the method in
Section 2.1, selecting the initial iterative vector x0 ¼ ðx1;x2; x3;x4Þ ¼ ð0:1; 0:2; 0:5; 0:5Þ and T0 ¼
5:6; the periodic orbit and period of the system can be determined through 12 times iterations. The
period T ¼ 6:2831903472: The theoretical period of the system T ¼ 2p and the periodic orbit is
shown in Fig. 4. And when the parameters are s ¼ 1:2; e ¼ 0 and o ¼ 1:2; the system is a balanced
rotor system and an autonomous system. We select the initial iterative vector
x0 ¼ ðx1; x2;x3; x4Þ ¼ ð0:1; 0:2; 0:5; 0:5Þ and T0 ¼ 5:6; The periodic orbit and its period of the
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system can be determined through nine times iterations. The period T ¼ 6:5219462376; and the
periodic orbit is shown in Fig. 5.

3.3. Determining the approximate analytic expressions of the periodic solution of the non-linear

rotor–bearing system by using the harmonic balancing method

In order to calculate and deduce the following formulas conveniently, Eq. (23) is transformed in
the linear method. Namely, the primary co-ordinate system of Eq. (23) will be rotated at y angle.
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Then Eq. (23) is transformed into

.x ¼
1

m
fxðx; y; ’x; ’yÞ þ u sin ðtÞ;

.y ¼ g þ
1

m
fyðx; y; ’x; ’yÞ þ u cos ðtÞ: ð26Þ

Eq. (26) is a strongly non-linear system. Its expressions of the oil film force are complicated. It is
almost impossible to determine with precision the analytic expressions of the periodic solution of
Eq. (26). Now, the approximate analytic expressions of the periodic solution of Eq. (26) with
Galerkin forms are determined. Because Eq. (26) is a strongly non-linear system, a trigonometric
function series as the eigenfunction of its periodic solution is taken. Suppose its ns order
approximate expressions of the stable periodic solution are given by

xðtÞ ¼ ax0 þ
Xns

n¼1

ðaxn cosðnptÞ � bxn sinðnptÞÞ;

yðtÞ ¼ ay0 þ
Xns

n¼1

ðayn cosðnptÞ � byn sinðnptÞÞ: ð27Þ

The character of the solution defines the parameter p: When p ¼ 1; Eq. (27) determines the
T-periodic solutions of the system. When pa1; Eq. (27) determines the T=p-periodic solutions.

Then

’xðtÞ ¼
Xns

n¼1

npð�axn sin ðnptÞ � bxn cos ðnptÞÞ;

’yðtÞ ¼
Xns

n¼1

npð�ayn sin ðnptÞ � byn cos ðnptÞÞ; ð28Þ

.xðtÞ ¼
Xns

n¼1

n2p2ð�axn cos ðnptÞ þ bxn sin ðnptÞÞ;

.yðtÞ ¼
Xns

n¼1

n2p2ð�ayn cos ðnptÞ þ byn sin ðnptÞÞ: ð29Þ

Define fx ¼ fxðx; y; ’x; ’yÞ; fy ¼ fyðx; y; ’x; ’yÞ: Because the oil film forces are concerned with the track
of the movement of the journal and the periodic track of Eq. (26) is defined by Eq. (27), the oil
film forces fx; fy necessarily possess the same periodic characteristic as Eq. (27). So, the oil film
forces fx; fy in Eq. (26) are expanded into the Fourier series with a form same as that of Eq. (27).

fx ¼ afx0 þ
Xns

n¼1

ðafxn cos ðnptÞ � bfxn sin ðnptÞÞ;

fy ¼ afy0 þ
Xns

n¼1

ðafyn cos ðnptÞ � bfyn sin ðnptÞÞ; ð30Þ
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where

afx0 ¼
p

2p

R 2p
0 fx dt;

afxn ¼
p

p

R 2p
0 fx cos ðnptÞ dt;

bfxn ¼
p

p

R 2p
0 fx sin ðnptÞ dt;

8>>>><
>>>>:

n ¼ 1; 2;y; ns; ð31Þ

afy0 ¼
p

2p

R 2p
0 fy dt;

afyn ¼
p

p

R 2p
0 fy cos ðnptÞ dt;

bfyn ¼
p

p

R 2p
0 fy sin ðnptÞ dt;

8>>>><
>>>>:

n ¼ 1; 2;y; ns: ð32Þ

Substituting Eqs. (27)–(32) into Eq. (26) and equating the coefficients of the harmonic terms with
the same order on both sides of the resultant equation yields the following relations between the
unknown coefficients:

p

2pm

R 2p
0 fx dt ¼ 0;

n2p2axn þ
p

mp

R 2p
0 fx cos ðnptÞ dt ¼ 0;

n2p2bxn þ
p

mp

R 2p
0 fx sin ðnptÞ dt� du ¼ 0; n ¼ 1; 2;y; ns:

p

2pm

R 2p
0 fy dtþ g ¼ 0;

n2p2ayn þ
p

mp

R 2p
0 fy cos ðnptÞ dtþ du ¼ 0;

n2p2byn þ
p

mp

R 2p
0 fy sin ðnptÞ dt ¼ 0;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð33Þ

Thereby, a non-linear algebraic equation set with 2ð2ns þ 1Þ variables (ax0; ax1; ax2;y;
axns

; bx0; bx1; bx2;y; bxns
; ay0; ay1; ay2;y; ayns

; by0; by1; by2;y; byns
) can be formed. Solving the

equation set above, approximate expressions of the periodic solution of Eq. (26) can be obtained.
So, the problem of determining the stable periodic solution of the differential Eq. (26) is

transformed into that of solving the non-linear algebraic equation set Eq. (26).
The Newton–Raphson method can be used to solve Eq. (33). In order to overcome the

shortcomings of the method that is crucial dependence on the initial iteration values, the
continuation method to extend the convergence range is adopted in practice. The method does not
confine the initial iteration values strictly. Select a set of the initial values. Then by solving the
homotopy equation selected, the initial iteration values fine enough and that locate in the
attractive region of the Newton iteration method can be obtained. Then the relative precision
solution of Eq. (26) can be obtained by using the Newton–Raphson method.

In order to quicken the solving speed of the harmonic balancing method, firstly, a probable
periodic solution is obtained by using the method in Section 2 and this determines its outline
characteristic. Because the method in this section depends on that in Section 2, the stability of the
periodic solution obtained can be tested by using the method about the stability in Section 2.
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The primary work is to calculate the Jacobi matrix J ¼ @FðxÞ=@x
� �

in practice. The solution of
the calculation indicates that the calculation speed can be advanced effectively by introducing the
FFT method. It is feasible to the rough initial iteration values to introduce the continuation
method. In theory, the periodic solution with any precision can be obtained if ns selected is big
enough. The increment of ns results in the increment of the order of Eq. (33) necessarily. That
causes the increment of the solving time.

The approximate analytic expressions of the periodic orbit of system (23) are solved by using
the method above. In order to solve Eq. (33), the character of the solution of system (23) must be
known. Otherwise the parameter p of Eq. (33) is confirmed only by tentative. For Eq. (23), when
e ¼ 0:2 and s ¼ 1:2; o ¼ 0:8; according to the conclusion of Section 3.2, it is known that the
period of the periodic orbit is the same as that of the eccentricity excitation, so the system has
the P � 1 periodic solution under the condition of the parameters. According to the character of
the solution, the parameter p in Eq. (33) is p ¼ 1: The second and third order approximate
analytic expressions of the solution obtained by using the method above are as follows:

The second order approximate analytic expression is

xðtÞ ¼ 0:24055915 þ 0:03168490 sinðtÞ þ 0:11036733 cosðtÞ

þ 0:00454233 sinð2tÞ þ 0:01832749 cosð2tÞ

yðtÞ ¼ 0:53406359 þ 0:16873016 sinðtÞ � 0:04590171 cosðtÞ

þ 0:02656739 sinð2tÞ þ 0:01161501 cosð2tÞ:

The third order approximate analytic expression is

xðtÞ ¼ 0:24055915 þ 0:03168490 sinðtÞ þ 0:11036733 cosðtÞ

þ 0:00454233 sinð2tÞ þ 0:01832749 cosð2tÞ

þ 0:00100444 sinð3tÞ þ 0:00544075 cosð3tÞ;

yðtÞ ¼ 0:53406359 þ 0:16873016 sinðtÞ � 0:04590171 cosðtÞ

þ 0:02656739 sinð2tÞ þ 0:01161501 cosð2tÞ

þ 0:00273012 sinð3tÞ þ 0:00204074 cosð3tÞ:

The orbit of the system determined by the second and third order approximate analytic
expressions above is shown in Fig. 6.

When there is no eccentricity excitation, namely e ¼ 0; system (23) is an autonomous system.
With the change of the whirl speed of the rotor, the Hopf bifurcation occurs in the system. When
e ¼ 0 and s ¼ 1:2; o ¼ 1:2; there is a limit cycle in the system. According to the character of the
solution obtained in Section 3.2, system (23) has the P � 1 periodic solution in the cases above, so
p ¼ 1: The approximate analytic expressions of the limit cycle are obtained by using the method
above.

The second order approximate expressions of the cycle are shown as follows:

xðtÞ ¼ 0:13533054 þ 0:04111482 sinðtÞ � 0:12254715 cosðtÞ

þ 0:00274443 sinð2tÞ þ 0:01544856 cosð2tÞ;

yðtÞ ¼ 0:43799260 � 0:21750180 sinðtÞ � 0:06176640 cosðtÞ

� 0:00693076 sinð2tÞ þ 0:01136908 cosð2tÞ:
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The third order approximate expressions of the cycle are shown as follows:

xðtÞ ¼ 0:13533054 þ 0:04111482 sinðtÞ � 0:12254715 cosðtÞ

þ 0:00274443 sinð2tÞ þ 0:01544856 cosð2tÞ

þ 0:00398165 sinð3tÞ � 0:00257291 cosð3tÞ;

yðtÞ ¼ 0:43799260 � 0:21750180 sinðptÞ � 0:06176640 cosðtÞ

� 0:00693076 sinð2tÞ þ 0:01136908 cosð2tÞ

� 0:00884223 sinð3tÞ � 0:00002203 cosð3tÞ:
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Fig. 6. The orbit of the non-autonomous system determined by the (a) second and (b) third order approximate analytic

expressions. s ¼ 1:2; e ¼ 0:2; o ¼ 0:8:
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The orbit of the system determined by the second and third order approximate analytic
expressions above is shown in Fig. 7.

4. Conclusions

The solving idea based on the traditional shooting method is adopted in this paper. The period
T is used as one of the parameters to take part in the iteration in such method. The value of
increment changed in iteration procedure is selected by using the optimization method. The
procedure includes determining both of the periodic orbit and its period. So both of them can be

ARTICLE IN PRESS

Fig. 7. The orbit of the autonomous system determined by the (a) second and (b) third order approximate analytic

expressions. s ¼ 1:2; e ¼ 0; o ¼ 1:2:
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obtained rapidly and accurately. The stability of the periodic solution is analyzed by using
Floquet stability theory. The validity of the method is verified by determining the periodic orbit
and its period of the forced van der Pol equation and a non-linear rotor–bearing system. The
periodic orbit, period and the approximate analytic expression of the periodic solution of the
non-linear rotor–bearing system are obtained. The method is efficiently used for the autonomous
or non-autonomous system, and is also suitable for higher-dimensional system. The result of
analysis can be used for the vibration control of the rotor–bearing system in practice.
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